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J .  P H Y S .  A ( G E N .  P H Y S . ) ,  1969, S E R .  2 ,  V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Integro-differential equations for light nuclei 

1). A .  F. OJIOJOL-4 
Institute of Computer Science, Unix ersity of Lagos, h'igeria 

31s. ycceized  3rd diIa?.ch 1969, iiz i.ezisedforiii 1st Jzi13' 1969 

Abstract. ' Two methods of deriving the integro-differential equations for light 
nuclei are given. The  resonating-group method of J. A. Wheeler is employed to  
construct the wa1-e function and from the Schrodinger equation a set of simultaneous 
integro-differentia1 equations is deril.ed. 

1.. Introduction 
T h e  work of Haniada (1960, 1961), EIamada and Johnston (1962), Signell and 1Iarshak 

(1957, 1958) and Gamine1 and Thaler (1957) has confirmed that nuclear forces consist 
of central, linear spin-orbit, tensor and quadratic spin-orbit forces. T h e  theoretical 
work relating nucleon-nucleon forces to the properties of nuclei is very tedious even 
for light nuclei and prohibitive for inediuni and hea7.y nuclei. 

Also in the method of resonating groups (Sl'heeler 1937) many types of direct and indirect 
terms, or potentials and kernels respectively, occur in the integro-differential equations 
describing a scattering or binding-energy problem. This arises e i w  with central forces. 
SVhen other type of forces are included many additional terms appear and further spin, 
isospin and orbital operator matrix elements have to be evaluated. 

Hochberg (1967, unpublished) proposed two modifications in calculations based on 
the method of resonating groups nhich reduce the algebraic and numerical work while 
maintaining the accuracy. :\loreover, the syniinetry of the kernels is automatically ensured. 
T h e  results for neutron-deuteron scattering in t e r m  of phase shifts and cross sections 
have been published recently by Hochberg et al. (1968). SVork on elastic neutron-triton 
and neutron-helium scattering problems is almost complete, and the results in terms of 
phase shifts and cross sections will be reported in a future publication. 

2. Nucleon-nucleus scattering 
Let (D(123 ...- 4) be the total antisymmetric nave function of rl nucleons. In  il, the 

total isospin T and its U" component T; n.ill determine the nature of the target nucleus 
and projectile (nucleon), that is, its isobaric state. I t  is also characterized by the total 
angular momentum J ,  its U" component 1, and the total spin S.  

- 
Let us consider - - 

~ ( 1 2  ..,A) = F(1-23 ,.. A)O(l, 23 .,.A) 
c-----2 

-F(2-13 ... ,-2)@(2, 13 . , .  r l )  - 
- F(3-21 . ,. A)0(3 ,  21 , .. -4) 

- ... (all exchanges of 1 with 23 .,, -4) - 
= 2 F(1-23 ,.. A)O(l ,  23 . . , A ) .  

F(1-23 ... A e t e s  the space function of nucleon 1 relative to the centre of mass of 
O(1, 23 ... A) is a function of space, spin and isospin variables of all nucleons 23 ... A. 

1, 2...A except the space variables of nucleon 1. 
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W e  define the kinetic energy operator 

T 1 2 3 . . . A  = T 1 - 2 3 . . . A +  T 2 - 3 4 . . . A +  * * .  + T A - l , A  

= T 2 - 1 3 . . . A +  T 1 - 3 4 . . . A +  * . *  + T A - l , A  

- - , . . (all other similar combinations) 

... (all other similar combinations). (2.2) - - 

All the operators are Hermitian which implies that any operator 0 can be expressed 
as 

-+ 
0 = 0 +Hermit ian conjugate. 

T h u s  we put 
+ c  

T = T + T  

- 
W e  assume that a( 1, 23 ... A )  satisfies a Schrodinger equation 

(2.5) 

and also its adjoint equation 
c 

(2.6) 

V234,  A = 1'23-k v2+$ 4 V A - 1 , A .  (2.7) 

- + -  
@*(I, 231 ... A ) ( T 2 3 4  . A +  v 2 3 4  . .A-EA-I) = 0 

where 

V,, is the interaction operator b e t m s p a r t i c l e s  i , j .  T h e  presence of the spin and 
isospin variables of nucleon 1 in cD(1, 23 ... A) reminds us that 0 is not the ground-state 
wave function of the target nucleus consisting of A A u c l e o n s  (23 ... A) but some modi- 
fication of it (a polarized state). If we choose @ ( l ,  23 ... A) to have the correct total spin 
and isospin of the target nucleus (23 ... A)in its ground state,we can take as an approximation 
EA-1 to be the binding energy of this nucleus, T h e  value of EA-.l has been obtained by 
several authors, including Sugie et al. (1957), Nagata et al. (1959), Hochberg et d. (1954) 
and Kanada et al. (1963), by a rariational solution of equation (2.5). S' ince we assume 
an  exact ground-state solution of equation (2.5) we can use the experimental value E A - 1 .  
T h e  validity of this a p p r o x i m a w d l  be discussed at  the end of 9 3. 

We now assume that a( 1, 23 ... A) satisfies the Schrodinger equation 
N 

( T ~ 2 3 , . , A + V 1 2 3 , , , A - ~ )  2 F(1-23 ... A)@(l ,  m) = 0 (2.8) 

where E is the total energy in the centre-of-mass system. 
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If we multiply the left-hand side of equation (2.5) by @"(l, 23 ... -4) and integrate 

and,'or sum over all variables of particles 23 ...A, Jve obtain 

Using equation (2.6) \ye can \\.rite equation (2.9) as 

z J 

x 2 F(i-123 . , .  i- 1 ,  i+ 1,  . . .  -4 )# ( i ,  323 ... i- 1 ,  i+ 1,  . . .  -4) = 0 (2.10) 
I F 1  

where T W  use 
E = E,+E.:-: ... (2.11) 

and Er- is the incident nucleon kinetic energl; in the centre-of-mass system. JIaking use 
of symmetry properties of the integrals and Jxriables of integration K C  can further modify 
the last equation to obtain 

, , , ,  t-E,)F(1-23 ... -4) - 1) 

- 
- (-4 - 1) 1' dTZ3 . , . _  py, 23 . . ,  i ~ ) p ~ ~ - ~ ~  . . , _  - rI2 ri3 
+ ... + J-1.i-E3)(I)(2, 13 . . ,  -3)F(2-13 . . .  -4) = 0 .  

- 
(2.12) 

This  is the cqriatiori for the incicicnt neutrons. -4 similar inoilitication is rcquired 
for the incident protons. 'l'he last integral can be \yrittcn 

(2.13) 
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T h u s  we can siniplify equation (2.12) using equation (2.13) to obtain 

This  is the final integro-differential equation in the dependent variable F and the 
independent vector variable (1-23 ... A). 

Jf'e now integrate and/or sum over all variables of nucleons except the radial com- 
ponent of the vector (1-23 ... A). This leads to a set of scalar equations in this radial com- 
ponent for given values of J ,  S and T .  Therefore one type of potential and two types of 
kernel depend on the neutron-neutron interaction ; all other terms in the equation merely 
depend on the number and type of nucleons (ivhether protons or neutrons) involved. 

-3. further simplification is possible and this will now be discussed, 

3. Alternative form of equation 
JTe now make use of the folloning identity: 

u-here 

and z is the number of protons and i , 6  are a proton pair. This  enables us to write equa- 
tion (2.14) as - c--J 

(Ti-23 ,,-E,)F(1-23 A ) T ( A - I ) { J  dT23,,,AOa(l, 23 ... A)V,,O(I, 23 ... A)]  - 
x F( 1-23 . .. A )  -(A - 4 )  J dr,3 ,,,. 4@*(1, 23 . . . A) 

where 
q = z+l (3.4) 

Equation (3.3) has the advantage that the kernel (i) is symmetric as before in equa- 
tion (2.14), (ii) involves one term V1, which can be thought of as the interaction between 
the particles (1, 2) directly concerned in the scattering process, and (iii) involves two other 
terms V34 and V,, which describe the interaction between the particles of the target 
nucleus. T h e  feature (iii) is particularly useful if one assumes all particle pairs to be in S 
states relative to each other. Consequently tensor, spin-orbit and quadratic spin-orbit 
forces will then give no contribution to the terms V,, and Vj6, 

A 4  
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We note that in equation (2.14) EA-l does not appear explicitly and so the solution 
depends on choosing a reliable wave function OA- for nucleus A - 1. This will be some 
modification of the bound-state functions of nucleus A- 1 owing to the proximity 
of the projectile nucleon. 

T o  sum up, the simplifications are essentially based on the use of equation (2.5) and its 
adjoint (2.6) leading to two alternative forms of the linear integro-differential equations, 
namely equations (2.14) and (3.3). Equation (2.5) was previously used in scattering prob- 
lems (see Sugie et al. 1957, van der Spuy 1956) and this reduced the algebra but led to 
symmetry difficulties which were eliminated bp a second application of equation (2.5). 
The  combined use of the equations (2.5) and (2.6) further reduces the algebraic and 
numerical work and avoids the symmetry difficulties. 

l ye  shall now give the results obtained for a few special cases. Let us consider the 
following two special cases. 

4. Neutron-deuteron scattering problems 

Let Y(C, 3) be the resonating-group wave function where particles 1, 2 are neutrons 
and 3 is a proton. The  formulation without isospin as mentioned earlier in this paper is 
shortened for practical calculations. 

The  basic Schrodinger equation is 

(TI,, -E + V12 + k;, + S23)(@(D)F( 1-23) - @(n)F(2-13)) = 0 (4.1) 

'F(12,3) = (D(qF(1-23)-@(D)F(2-13) (4.2) 
where we have written 

N 

and @(D), etc., are symmetric in interchange of 2 and 3. T i s  the kinetic-energy operator. 
E is the total energy of the system and the VtI's are the interactions between particles i and j .  
We now use the deuteron equation 

ED and E, being the deuteron binding energy and the incident neutron energy respectively 
(centre-of-mass units). 

Following the simplifications outlined in 4 3, the equivalent of equation (3.3) is 

where 

and r, r' are the centre-of-mass coordinates of particles 1 and 2 respectively. The  scalar 
linear integro-differential equations are obtained by multiplying equation (4.6) on the left 
by YJs ( l )  which is the eigenfunction of 1 having given eigenvalues J and 5' (total angular 
momentum and total spin respectively) and summing and integrating over all variables 
except the radial component of r .  
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5 .  Neutron-triton scattering problems 

5 4, the final equation for the neutron-triton scattering can be written as 
Let 1, 2, 3 be the neutrons and 4 the proton. Then, by a procedure similar to that of 

- 2  1 d ~ ~ ~ 4 ~ ~ ( - 1 ) ( T 1 - 2 3 4 - T 1 - 3 4 - T 3 4 + E ~ - E ~ t  Vl,-V34)a>(-2)F(2) = 0 (5.1) 

)There @*( - 1) is @(234), etc., and ET is the triton binding energy. It should be noted that 
we have applied equation (3.3) to the two special cases considered above. 

yu 
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